Innovative materials play essential roles in safety, clean energy, transportation, human health, and industrial productivity. To fuel continued innovation, researchers want to deepen their understanding of the physical and chemical properties of materials (morphological, structural, magnetic, thermal, and mechanical) from the macro- to nanoscale. Whether discovering new materials, solving analytical problems, improving processes, or assuring product quality, electron microscopy is capable of providing insight at all scales and modalities. The discoveries resulting from materials science research help enhance researchers’ ability to successfully correlate structural properties with functional performance. In turn, this insight helps commercial enterprises innovate products and processes to gain important time-to-market and cost advantages.

Analytical solutions, including electron microscopy and spectroscopy, from Thermo Fisher Scientific can help you address your most pressing challenges, including;

  • Developing new functional materials that meet the demands of today’s unique social and economic challenges
  • Supporting the discovery of new materials with reproducible data from complementary techniques
  • Solving materials and method development challenges to improve processes and investigate product defects
  • Publishing groundbreaking discoveries, writing winning grant proposals, or patenting novel materials
  • Assuring defects are rejected before they reach customers
  • Taking your ideas to market quickly and keeping your company competitive

Defect analysis of a lithium ion battery cathode. Serial sectioning and imaging with Plasma FIB DualBeam followed by digital 3D reconstruction using Avizo software provides a highly detailed model of the sample.

Applications

Process Control_Thumb_274x180_144DPI

Process Control
 

Modern industry demands high throughput with superior quality, a balance that is maintained through robust process control. SEM and TEM tools with dedicated automation software provide rapid, multi-scale information for process monitoring and improvement.

 

Quality Control_Thumb_274x180_144DPI

Quality Control
 

Quality control and assurance are essential in modern industry. We offer a range of EM and spectroscopy tools for multi-scale and multi-modal analysis of defects, allowing you to make reliable and informed decisions for process control and improvement.

 

Fundamental Materials Research_R&D_Thumb_274x180_144DPI

Fundamental Materials Research

Novel materials are investigated at increasingly smaller scales for maximum control of their physical and chemical properties. Electron microscopy provides researchers with key insight into a wide variety of material characteristics at the micro- to nano-scale.

 

Aluminum mineral grain found with SEM during parts cleanliness testing

Cleanliness
 

More than ever, modern manufacturing necessitates reliable, quality components. With scanning electron microscopy, parts cleanliness analysis can be brought inhouse, providing you with a broad range of analytical data and shortening your production cycle.

Style Sheet for Techniques Only Tab

S/TEM Sample Preparation

DualBeam microscopes enable the preparation of high-quality, ultra-thin samples for S/TEM analysis. Thanks to advanced automation, users with any experience level can obtain expert-level results for a wide range of materials.

Learn more ›

3D Materials Characterization

Development of materials often requires multi-scale 3D characterization. DualBeam instruments enable serial sectioning of large volumes and subsequent SEM imaging at nanometer scale, which can be processed into high-quality 3D reconstructions of the sample.

Learn more ›

Nanoscale Prototyping

As technology continues to miniaturize, the demand for nanoscale devices and structures is ever increasing. 3D nanoprototyping with DualBeam instruments helps you to quickly design, create, and inspect micro- and nanoscale functional prototypes.

Learn more ›

Energy Dispersive Spectroscopy

Energy dispersive spectroscopy (EDS) collects detailed elemental information along with electron microscopy images, providing critical compositional context for EM observations. With EDS, chemical composition can be determined from quick, holistic surface scans down to individual atoms.

Learn more ›

EDS Elemental Analysis

EDS provides vital compositional information to electron microscope observations. In particular, our unique Super-X and Dual-X Detector Systems add options for enhanced throughput and/or sensitivity, allowing you to optimize data acquisition to meet your research priorities.

Learn more ›

3D EDS Tomography

Modern materials research is increasingly reliant on nanoscale analysis in three dimensions. 3D characterization, including compositional data for full chemical and structural context, is possible with 3D EM and energy dispersive X-ray spectroscopy.

Learn more ›

Atomic-Scale Elemental Mapping with EDS

Atomic-resolution EDS provides unparalleled chemical context for materials analysis by differentiating the elemental identity of individual atoms. When combined with high-resolution TEM, it is possible to observe the precise organization of atoms in a sample.

Learn more ›

Imaging using HRSTEM and HRTEM

Transmission electron microscopy is invaluable for characterizing the structure of nanoparticles and nanomaterials. High-resolution STEM and TEM enable atomic-resolution data along with information on chemical composition.

Learn more ›

Differential Phase Contrast Imaging

Modern electronics research relies on nanoscale analysis of electric and magnetic properties. Differential phase contrast STEM (DPC-STEM) can image the strength and distribution of magnetic fields in a sample and display the magnetic domain structure.

Learn more ›

Imaging Hot Samples

Studying materials in real-world conditions often involves working at high temperatures. The behavior of materials as they recrystallize, melt, deform, or react in the presence of heat can be studied in situ with scanning electron microscopy or DualBeam tools.

Learn more ›

X-Ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) enables surface analysis, providing elemental composition as well as the chemical and electronic state of the top 10 nm of a material. With depth profiling, XPS analysis extends to compositional insight of layers.

Learn more ›

Environmental SEM (ESEM)

Environmental SEM allows materials to be imaged in their native state. This is ideally suited for academic and industrial researchers who need to test and analyze samples that are wet, dirty, reactive, outgassing or otherwise not vacuum compatible.

Learn more ›

Electron Energy Loss Spectroscopy

Materials science research benefits from high-resolution EELS for a wide range of analytical applications. This includes high-throughput, high signal-to-noise-ratio elemental mapping, as well as probing of oxidation states and surface phonons.

Learn more ›

APT Sample Preparation

Atom probe tomography (APT) provides atomic-resolution 3D compositional analysis of materials. Focused ion beam (FIB) microscopy is an essential technique for high-quality, orientation, and site-specific sample preparation for APT characterization.

Learn more ›

Cross-sectioning

Cross sectioning provides extra insight by revealing sub-surface information. DualBeam instruments feature superior focused ion beam columns for high-quality cross sectioning. With automation, unattended high-throughput processing of samples is possible.

Learn more ›

In Situ experimentation

Direct, real-time observation of microstructural changes with electron microscopy is necessary to understand the underlying principles of dynamic processes such as recrystallization, grain growth, and phase transformation during heating, cooling, and wetting.

Learn more ›

Particle analysis

Particle analysis plays a vital role in nanomaterials research and quality control. The nanometer-scale resolution and superior imaging of electron microscopy can be combined with specialized software for rapid characterization of powders and particles.

Learn more ›

Cathodoluminescence

Cathodoluminescence (CL) describes the emission of light from a material when it is excited by an electron beam. This signal, captured by a specialized CL detector, carries information on the sample’s composition, crystal defects, or photonic properties.

Learn more ›

SIMS

The TOF-SIMS (time-of-flight secondary ion mass spectrometry) detector for focused ion beam scanning electron microscopy (FIB-SEM) tools enables high-resolution analytical characterization of all elements in the periodic table, even at low concentrations.

Learn more ›

Multi-scale analysis

Novel materials must be analyzed at ever higher resolution while retaining the larger context of the sample. Multi-scale analysis allows for the correlation of various imaging tools and modalities such as X-ray microCT, DualBeam, Laser PFIB, SEM and TEM.

Learn more ›

ColorSEM

Using live EDS (energy dispersive X-ray spectroscopy) with live quantification, ColorSEM Technology transforms SEM imaging into a color technique. Any user can now acquire elemental data continuously for more complete information than ever before.

Learn more ›

S/TEM Sample Preparation

DualBeam microscopes enable the preparation of high-quality, ultra-thin samples for S/TEM analysis. Thanks to advanced automation, users with any experience level can obtain expert-level results for a wide range of materials.

Learn more ›

3D Materials Characterization

Development of materials often requires multi-scale 3D characterization. DualBeam instruments enable serial sectioning of large volumes and subsequent SEM imaging at nanometer scale, which can be processed into high-quality 3D reconstructions of the sample.

Learn more ›

Nanoscale Prototyping

As technology continues to miniaturize, the demand for nanoscale devices and structures is ever increasing. 3D nanoprototyping with DualBeam instruments helps you to quickly design, create, and inspect micro- and nanoscale functional prototypes.

Learn more ›

Energy Dispersive Spectroscopy

Energy dispersive spectroscopy (EDS) collects detailed elemental information along with electron microscopy images, providing critical compositional context for EM observations. With EDS, chemical composition can be determined from quick, holistic surface scans down to individual atoms.

Learn more ›

EDS Elemental Analysis

EDS provides vital compositional information to electron microscope observations. In particular, our unique Super-X and Dual-X Detector Systems add options for enhanced throughput and/or sensitivity, allowing you to optimize data acquisition to meet your research priorities.

Learn more ›

3D EDS Tomography

Modern materials research is increasingly reliant on nanoscale analysis in three dimensions. 3D characterization, including compositional data for full chemical and structural context, is possible with 3D EM and energy dispersive X-ray spectroscopy.

Learn more ›

Atomic-Scale Elemental Mapping with EDS

Atomic-resolution EDS provides unparalleled chemical context for materials analysis by differentiating the elemental identity of individual atoms. When combined with high-resolution TEM, it is possible to observe the precise organization of atoms in a sample.

Learn more ›

Imaging using HRSTEM and HRTEM

Transmission electron microscopy is invaluable for characterizing the structure of nanoparticles and nanomaterials. High-resolution STEM and TEM enable atomic-resolution data along with information on chemical composition.

Learn more ›

Differential Phase Contrast Imaging

Modern electronics research relies on nanoscale analysis of electric and magnetic properties. Differential phase contrast STEM (DPC-STEM) can image the strength and distribution of magnetic fields in a sample and display the magnetic domain structure.

Learn more ›

Imaging Hot Samples

Studying materials in real-world conditions often involves working at high temperatures. The behavior of materials as they recrystallize, melt, deform, or react in the presence of heat can be studied in situ with scanning electron microscopy or DualBeam tools.

Learn more ›

X-Ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) enables surface analysis, providing elemental composition as well as the chemical and electronic state of the top 10 nm of a material. With depth profiling, XPS analysis extends to compositional insight of layers.

Learn more ›

Environmental SEM (ESEM)

Environmental SEM allows materials to be imaged in their native state. This is ideally suited for academic and industrial researchers who need to test and analyze samples that are wet, dirty, reactive, outgassing or otherwise not vacuum compatible.

Learn more ›

Electron Energy Loss Spectroscopy

Materials science research benefits from high-resolution EELS for a wide range of analytical applications. This includes high-throughput, high signal-to-noise-ratio elemental mapping, as well as probing of oxidation states and surface phonons.

Learn more ›

APT Sample Preparation

Atom probe tomography (APT) provides atomic-resolution 3D compositional analysis of materials. Focused ion beam (FIB) microscopy is an essential technique for high-quality, orientation, and site-specific sample preparation for APT characterization.

Learn more ›

Cross-sectioning

Cross sectioning provides extra insight by revealing sub-surface information. DualBeam instruments feature superior focused ion beam columns for high-quality cross sectioning. With automation, unattended high-throughput processing of samples is possible.

Learn more ›

In Situ experimentation

Direct, real-time observation of microstructural changes with electron microscopy is necessary to understand the underlying principles of dynamic processes such as recrystallization, grain growth, and phase transformation during heating, cooling, and wetting.

Learn more ›

Particle analysis

Particle analysis plays a vital role in nanomaterials research and quality control. The nanometer-scale resolution and superior imaging of electron microscopy can be combined with specialized software for rapid characterization of powders and particles.

Learn more ›

Cathodoluminescence

Cathodoluminescence (CL) describes the emission of light from a material when it is excited by an electron beam. This signal, captured by a specialized CL detector, carries information on the sample’s composition, crystal defects, or photonic properties.

Learn more ›

SIMS

The TOF-SIMS (time-of-flight secondary ion mass spectrometry) detector for focused ion beam scanning electron microscopy (FIB-SEM) tools enables high-resolution analytical characterization of all elements in the periodic table, even at low concentrations.

Learn more ›

Multi-scale analysis

Novel materials must be analyzed at ever higher resolution while retaining the larger context of the sample. Multi-scale analysis allows for the correlation of various imaging tools and modalities such as X-ray microCT, DualBeam, Laser PFIB, SEM and TEM.

Learn more ›

ColorSEM

Using live EDS (energy dispersive X-ray spectroscopy) with live quantification, ColorSEM Technology transforms SEM imaging into a color technique. Any user can now acquire elemental data continuously for more complete information than ever before.

Learn more ›

Samples


Battery Research

Battery development is enabled by multi-scale analysis with microCT, SEM and TEM, Raman spectroscopy, XPS, and digital 3D visualization and analysis. Learn how this approach provides the structural and chemical information needed to build better batteries.

Learn more ›


Metals Research

Effective production of metals requires precise control of inclusions and precipitates. Our automated tools can perform a variety of tasks critical for metal analysis including; nanoparticle counting, EDS chemical analysis and TEM sample preparation.

Learn more ›


Polymers Research

Polymer microstructure dictates the material’s bulk characteristics and performance. Electron microscopy enables comprehensive microscale analysis of polymer morphology and composition for R&D and quality control applications.

Learn more ›


Geological Research

Geoscience relies on consistent and accurate multi-scale observation of features within rock samples. SEM-EDS, combined with automation software, enables direct, large-scale analysis of texture and mineral composition for petrology and mineralogy research.

Learn more ›


Oil and Gas

As the demand for oil and gas continues, there is an ongoing need for efficient and effective extraction of hydrocarbons. Thermo Fisher Scientific offers a range of microscopy and spectroscopy solutions for a variety of petroleum science applications.

Learn more ›


Nanoparticles

Materials have fundamentally different properties at the nanoscale than at the macroscale. To study them, S/TEM instrumentation can be combined with energy dispersive X-ray spectroscopy to obtain nanometer, or even sub-nanometer, resolution data.

Learn more ›


Forensics

Micro-traces of crime scene evidence can be analyzed and compared using electron microscopy as part of a forensic investigation. Compatible samples include glass and paint fragments, tool marks, drugs, explosives, and GSR (gunshot residue).

Learn more ›


Catalysis Research

Catalysts are critical for a majority of modern industrial processes. Their efficiency depends on the microscopic composition and morphology of the catalytic particles; EM with EDS is ideally suited for studying these properties.

Learn more ›


Fibers and Filters

The diameter, morphology and density of synthetic fibers are key parameters that determine the lifetime and functionality of a filter. Scanning electron microscopy (SEM) is the ideal technique for quickly and easily investigating these features.

Learn more ›


2D Materials

Novel materials research is increasingly interested in the structure of low-dimensional materials. Scanning transmission electron microscopy with probe correction and monochromation allows for high-resolution two-dimensional materials imaging.

Learn more ›


Automotive Materials Testing

Every component in a modern vehicle is designed for safety, efficiency, and performance. Detailed characterization of automotive materials with electron microscopy and spectroscopy informs critical process decisions, product improvements, and new materials.

Learn more ›

Products

Style Sheet for Instrument Cards Original

Helios 5 Laser PFIB System

  • Fast, millimeter-scale cross sections
  • Statistically relevant deep subsurface and 3D data analysis
  • Shares all capabilities of the Helios 5 PFIB platform

Helios Hydra DualBeam

  • 4 fast switchable ion species (Xe, Ar, O, N) for optimized PFIB processing of a widest range of materials
  • Ga-free TEM sample preparation
  • Extreme high resolution SEM imaging

Helios 5 DualBeam

  • Fully automated, high-quality, ultra-thin TEM sample preparation
  • High throughput, high resolution subsurface and 3D characterization
  • Rapid nanoprototyping capabilities

Helios 5 PFIB DualBeam

  • Gallium-free STEM and TEM sample preparation
  • Multi-modal subsurface and 3D information
  • Next-generation 2.5 μA xenon plasma FIB column

Spectra 300

  • Highest-resolution structural and chemical information at the atomic level
  • Flexible high-tension range from 30-300 kV
  • Three lens condenser system

Spectra 200

  • High-resolution and contrast imaging for accelerating voltages from 30-200 kV
  • Symmetric S-TWIN/X-TWIN objective lens with wide-gap pole piece design of 5.4 mm
  • Sub-Angstrom STEM imaging resolution from 60 kV-200 kV

Themis ETEM

  • Precise control and knowledge of sample temperature
  • Improved sample stability, navigation, and assisted sample drift correction in x, y, and z axes
  • Advancing high-quality imaging and movie acquisition functions

Talos F200i TEM

  • High-quality S/TEM images and accurate EDS
  • Available with dual EDS technology
  • Best all-round in situ capabilities
  • Large field-of-view imaging at high speed

Talos F200S TEM

  • Precise chemical composition data
  • High performance imaging and precise compositional analysis for dynamic microscopy
  • Features Velox Software for fast and easy acquisition and analysis of multimodal data

Talos F200X TEM

  • High resolution/throughput in STEM imaging and chemical analysis
  • Add application-specific in situ sample holders for dynamic experiments
  • Features Velox Software for fast and easy acquisition and analysis of multimodal data

Talos F200C TEM

  • Flexible EDS analysis reveals chemical information
  • High-contrast, high-quality TEM and STEM imaging
  • Ceta 16 Mpixel CMOS camera provides large field of view and high read-out speed

Scios 2 DualBeam

  • Full support of magnetic and non-conductive samples
  • High throughput subsurface and 3D characterization
  • Advanced ease of use and automation capabilities

Talos L120C TEM

  • Increased stability
  • 4k × 4K Ceta CMOS camera
  • TEM magnification range from 25 – 650 k×
  • Flexible EDS analysis reveals chemical information

Verios XHR SEM

  • Monochromated SEM for sub-nanometer resolution over the full 1 keV to 30 keV energy range
  • Easy access to beam landing energies as low as 20 eV
  • Excellent stability with piezo stage as standard

Quattro ESEM

  • Ultra-versatile high-resolution FEG SEM with unique environmental capability (ESEM)
  • Observe all information from all samples with simultaneous SE and BSE imaging in every mode of operation

Apreo SEM

  • High-performance SEM for all-round nanometer or sub-nanometer resolution
  • In-column T1 backscatter detector for sensitive, TV-rate materials contrast
  • Excellent performance at long working distance (10 mm)

Prisma E SEM

  • Entry-level SEM with excellent image quality
  • Easy and quick sample loading and navigation for multiple samples
  • Compatible with a wide range of materials thanks to dedicated vacuum modes

VolumeScope 2 SEM

  • Isotropic 3D data from large volumes
  • High contrast and resolution in high and low vacuum modes
  • Simple switch between normal SEM use and serial block-face imaging

Phenom Pharos Desktop SEM

  • FEG source with 2 up to 15 kV acceleration voltage range
  • <2.5 nm (SE) and <4.0 nm (BSE) resolution @ 15 kV; up to 1,000,000x magnification
  • Optional fully integrated EDS and SE detector

Phenom XL G2 Desktop SEM

  • For large samples (100x100 mm) and ideal for automation
  • <10 nm resolution and up to 200,000x magnification; 4.8 kV up to 20 kV acceleration voltage
  • Optional fully integrated EDS and BSE detector

Phenom Pro Desktop SEM

  • High performance desktop SEM
  • Resolution <8 nm (SE) and <10 nm (BSE); magnification up to 150,000x
  • Optional SE detector

Phenom ProX Desktop SEM

  • High performance desktop SEM with integrated EDS detector
  • Resolution <8 nm (SE) and <10 nm (BSE); magnification up to 150,000x
  • Optional SE detector
 
 

Phenom Pure Desktop SEM

  • Entry level desktop SEM
  • Resolution <25 nm; magnification up to 65,000x
  • Longlife CeB6 source

Phenom ParticleX AM Desktop SEM

  • Versatile desktop SEM with automation software for Additive Manufacturing
  • Resolution <10 nm; magnification up to 200,000x
  • Optional SE detector

Phenom ParticleX TC Desktop SEM

  • Versatile desktop SEM with automation software for Technical Cleanliness
  • Resolution <10 nm; magnification up to 200,000x
  • Optional SE detector

Phenom Perception GSR Desktop SEM

  • Dedicated automated GSR desktop SEM
  • Resolution <10 nm; magnification up to 200,000x
  • Longlife CeB6 source

Nexsa XPS

  • Tilt Module for ARXPS measurements
  • Dual-mode ion source for expanded depth profiling capabilities
  • Insulator analysis

K-Alpha XPS

  • Selectable area spectroscopy
  • Micro-focused monochromator
  • High-resolution chemical state spectroscopy

ESCALAB Xi+ XPS

  • High sensitivity spectroscopy
  • XPS with non-monochromatic X-rays
  • 180° hemispherical energy analyzer

HeliScan microCT

  • Advanced helical scanning and iterative reconstruction technology
  • High resolution x-ray source (below 400 nm)
  • Process, analyze, and visualize samples

Auto Slice and View 4.0 Software

  • Automated serial sectioning for DualBeam
  • Multi-modal data acquisition (SEM, EDS, EBSD)
  • On-the-fly editing capabilities
  • Edge based cut placement

Avizo Software

  • Support for multi-data/multi-view, multi-channel, time series, very large data
  • Advanced multi-mode 2D/3D automatic registration
  • Artifact reduction algorithms

AutoTEM 5

  • Fully automated in situ S/TEM sample preparation
  • Support of top-down, planar and inverted geometry
  • Highly configurable workflow
  • Easy to use, intuitive user interface

AutoScript 4

  • improved reproducibility and accuracy
  • Unattended, high throughput imaging and patterning
  • Supported by Python 3.5-based scripting environment

Velox

  • An experiments panel on the left side of the processing window.
  • Live quantitative mapping
  • Interactive detector layout interface for reproducible experiment control & set-up

Inspect 3D

  • Cross-correlation
  • Feature tracking
  • The algebraic reconstruction technique

Maps Software

  • Acquire high resolution images over large areas
  • Easily find regions of interest
  • Automate image acquisition process
  • Correlate data from different sources

Nanobuilder

  • CAD-based prototyping
  • Fully automated job execution, stage navigation, milling, and deposition
  • Automated alignment and drift control

ProSuite

  • Automated collection of images
  • Real-time remote control
  • Standard applications included: Automated Image Mapping + Remote User Interface

PoroMetric

  • Correlate pore features such as area, aspect ratio, major and minor axis
  • Acquire images directly from the Desktop SEM
  • Statistical data with high-quality images

ParticleMetric

  • Integrated software in ProSuite for online and offline analysis
  • Correlating particle features such as diameter, circularity, aspect ratio and convexity
  • Creating image datasets with Automated Image Mapping

Elemental Mapping

  • Fast and reliable information on the distribution of elements within the sample or the selected line
  • Easily exported and reported results

3D Reconstruction

  • Intuitive user interface, maximum employability
  • Intuitive fully automated user interface
  • Based on 'shape from shading' technology, no stage tilt required

FiberMetric

  • Save time by automated measurements
  • Fast and automated collection of all statistical data
  • View and measure micro and nano fibers with unmatched accuracy

Phenom Programming Interface

  • Customize your SEM to fit your workflow
  • Increase efficiency and save time with automated processes
  • Control imaging settings and stage navigation

AsbestoMetric

  • Automated tool for image acquisition, fiber detection and reporting
  • Assisted EDS analysis with fiber revisiting
  • ISO standard report on asbestos analysis

Quartz PCI/CFR

  • SEM imaging traceability compliant with 21 CFR Part 11
  • Compatible with the Phenom XL and Phenom Pro desktop SEMs
  • Windows 10 64-bit operating system support

EM Services for DualBeam (FIB SEM) Microscope

  • Become an expert on all aspects of your workflow
  • Receive enhanced visibility to product performance
  • Enjoy comprehensive maintenance and committed uptime

Contact us

Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards

Electron microscopy services for
the materials science

To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.

Learn more ›